
Document name:

Upgrading EcFAT from 2.2 to 3.0
Version

3.1.2

Internal reference:

Products/EcFAT/Upgrade2.2to3.0/4537

EcFAT Upgrading from 2.2 to 3.0 Page 1 of 5

Upgrading EcFAT

from version 2.2 to 3.0

Version 3.1.2

© Copyright 2016 EmbCode AB

Table of contents

1 INTRODUCTION .. 2

2 UPGRADING ... 3

2.1 CHANGE INCLUDE HEADER FILES .. 3

2.2 CHANGE INCLUDED SOURCE FILES .. 3

2.3 CHANGE TYPES FROM BYTE, WORD, DWORD TO UINT8_T, UINT16_T AND UINT32_T WHERE NECESSARY 3

2.4 ADD A 4
TH

 PARAMETER TO ALL YOUR ECF_READFILE() CALLS .. 3

2.5 RENAME FNREADSECTOR, FNWRITESECTOR AND FNGETVOLUMEINFORMATION .. 4

2.6 ADD FLAGS PARAMETER TO BLOCK DRIVER M_FNREADSECTOR AND M_WRITESECTOR FUNCTIONS............................... 4

2.7 IF USING TRIM: REPLACE FNWRITETRIMMEDSECTOR ... 5

2.8 READ ECFAT GETTING STARTED GUIDE.PDF .. 5

Document name:

Upgrading EcFAT from 2.2 to 3.0
Version

3.1.2

Internal reference:

Products/EcFAT/Upgrade2.2to3.0/4537

EcFAT Upgrading from 2.2 to 3.0 Page 2 of 5

1 Introduction
EcFAT 3.0 adds a lot of new features to EcFAT 2.2 like journaling, wear-leveling and bad block

management.

It is EmbCode’s policy to only introduce API changes that requires code rewrite with new major

versions.

The API changes included in EcFAT 3.0 are both to support new features and to make EcFAT easier

to use. Most of these changes could have been done in a way to be compatible with EcFAT 2.2 but

clarity and simplicity of the code are more important. We also believe that most users that upgrade to

EcFAT 3.0 plan to use the new features and would change their code anyway.

This document describes how to rewrite EcFAT 2.2 code to work with EcFAT 3.0.

Document name:

Upgrading EcFAT from 2.2 to 3.0
Version

3.1.2

Internal reference:

Products/EcFAT/Upgrade2.2to3.0/4537

EcFAT Upgrading from 2.2 to 3.0 Page 3 of 5

2 Upgrading

2.1 Change Include header files

The naming structure has been changed and includes need to change.

Change includes from:

#include "ECF/ECF.h"

to:

#include "EcFAT/EcFAT.h"

All functions still have the "ECF_" prefix.

2.2 Change included source files

Files now have the EcFAT_ prefix instead of ECF_. Also make sure you add the two new files

EcFAT_Journal.c and EcFAT_WearLevel.c.

2.3 Change types from BYTE, WORD, DWORD to uint8_t, uint16_t

and uint32_t where necessary

The old types BYTE, WORD and DWORD have been replaced with uint8_t, uint16_t and uint32_t.

These are normally defined in stdint.h but will be defined by EcFAT if not present.

You will need to change the types in your block driver functions.

If you have any casts to BYTE, WORD and/or DWORD in your code, you need to change these as

well.

2.4 Add a 4th parameter to all your ECF_ReadFile() calls

Previsouly, you had to supply the exact number of bytes to read to ECF_ReadFile(). It now supports a

second mode where you specify the size of your buffer and ECF_ReadFile() reads as many bytes as

possible. For this to work, an extra parameter is necessary.

To convert your old code, search for ECF_ReadFile() and add a NULL parameter in the end. If you

previously had:

 if(ECF_ReadFile(&fileHandle, data, 32) != ECFERR_SUCCESS)

 halt("Can't read file");

Replace it with:

 if(ECF_ReadFile(&fileHandle, data, 32, NULL) != ECFERR_SUCCESS)

 halt("Can't read file");

Document name:

Upgrading EcFAT from 2.2 to 3.0
Version

3.1.2

Internal reference:

Products/EcFAT/Upgrade2.2to3.0/4537

EcFAT Upgrading from 2.2 to 3.0 Page 4 of 5

If you supply NULL as the 4th parameter, ECF_ReadFile() will act exactly like in EcFAT 2.2 and

previous versions.

See ECF_ReadFile in EcFAT API Reference to see how to use the 4th parameter.

2.5 Rename fnReadSector, fnWriteSector and

fnGetVolumeInformation

The function pointers in the struct ECF_BlockDriver has the m_ prefix added for consistency.

If you previously had:

 bd.fnReadSector = MyDriver_ReadSector;

 bd.fnWriteSector = MyDriver_WriteSector;

 bd.fnGetVolumeInformation = MyDriver_GetVolumeInformation;

Change it to:

 bd.m_fnReadSector = MyDriver_ReadSector;

 bd.m_fnWriteSector = MyDriver_WriteSector;

 bd.m_fnGetVolumeInformation = MyDriver_GetVolumeInformation;

2.6 Add flags parameter to block driver m_fnReadSector and

m_fnWriteSector functions

The functions m_fnReadSector and m_fnWriteSector now take an extra parameter of type uint8_t

called flags.

If you previously had (after changing the types):

ECF_ErrorCode MyDriver_ReadSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData)

{

 ...

}

ECF_ErrorCode MyDriver_WriteSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData)

{

 ...

}

You should change it to:

Document name:

Upgrading EcFAT from 2.2 to 3.0
Version

3.1.2

Internal reference:

Products/EcFAT/Upgrade2.2to3.0/4537

EcFAT Upgrading from 2.2 to 3.0 Page 5 of 5

ECF_ErrorCode MyDriver_ReadSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags)

{

 ...

}

ECF_ErrorCode MyDriver_WriteSector(

 struct ECF_BlockDriver *pBlockDriver,

 uint32_t sector,

 uint8_t *pData,

 uint8_t flags)

{

 ...

}

If you are not using trim, wear-leveling or bad block management, you can safely ignore the flags

parameter. But if you plan to use these features, see EcFAT Getting started guide on what flags you

need to handle.

2.7 If using TRIM: Replace fnWriteTrimmedSector

struct ECF_BlockDriver no longer contains fnWriteTrimmedSector.

EcFAT will now notify the block driver that the sector it is writing is trimmed by calling

m_fnWriteSector() with the flag ECF_WRITESECTOR_IS_TRIMMED set.

2.8 Read EcFAT Getting started guide.pdf

If you wish to implement journaling. wear-leveling or bad block management support, continue reading

in EcFAT Getting started guide.pdf.

